Monet
An Impressionist Sketch of

an Advanced Database System

Peter A. Boncz * Martin L. Kersten
University of Amsterdam University of Amsterdam/CWI
boncz@fwi.uva.nl mk@{fwi.uva.nl, cwi.nl}

November 1994

Abstract

Monet is a customizable database system developed at CWI and University of Amsterdam, intended to
be used as the database backend for widely varying application domains. It is designed to get maximum
database performance out of today’s workstations and multiprocessor systems. It has already achieved
considerable success in supporting a Data Mining application [12, 13], and work is well under way in a
project where it is used in a high-end GIS application. Monet is a type- and algebra-extensible database
system and employs shared memory parallelism. In this paper, we give the goals and motivation of Monet,
and outline its architectural features, including its use of the Decomposed Storage Model (DSM), emphasis
on bulk operations, use of main virtual-memory and server customization. As a case example, we discuss
some issues on how to build a GIS on top of Monet; amongst others how Monet can handle the very large

data volumes involved.

*Parts of this work are supported by SION grant no. 612-23-431

Monet *

An Impressionist Sketch of

an Advanced Database System

November 1994

Abstract

Monet is a customizable database system developed at
CWI and University of Amsterdam, intended to be used
as the database backend for widely varying application
domains. It is designed to get maximum database per-
formance out of today’s workstations and multiproces-
sor systems. It has already achieved considerable suc-
cess in supporting a Data Mining application [12, 13],
and work is well under way in a project where it is used
in a high-end GIS application. Monet is a type- and
algebra-extensible database system and employs shared
memory parallelism. In this paper, we give the goals
and motivation of Monet, and outline its architectural
features, including its use of the Decomposed Storage
Model (DSM), emphasis on bulk operations, use of main
virtual-memory and server customization. As a case ex-
ample, we discuss some issues on how to build a GIS on
top of Monet; amongst others how Monet can handle the
very large data volumes involved.

1 Introduction

Developments in personal workstation hardware are at a
high and continuing pace. Main memories of 128 MB are
now affordable, and custom CPUs currently can perform
at 50 MIPS, relying on efficient use of registers and cache
to tackle the disparity between processor and main mem-
ory cycle time, that increases every year with 40% [16].
These hardware trends pose new rules to computer soft-
ware — and to database systems — as to what algorithms
are efficient. This article describes the design and im-
plementation of an efficient, parallel, customizable, main
memory-oriented database server called Monet. It has
been under developed at the CWI and the University of
Amsterdam since 1992.

Let us take a closer look at the design goals of Monet:

e high performance. Monet is designed to achieve op-
timal database performance on current hardware,

*Parts of this work are supported by SION grant no. 612-
23-431

with the above mentioned trends in mind.

e customizability. When a database server is to be
used as the backend for applications in widely vary-
ing domains, it has to provide a way to customize
its functionality. That is, not only it has to provide
type-extensibility (allowing for instance the intro-
duction of GIS datatypes and access methods), but
also there is a need for adding application specific
code to the server, that serves the need those spe-
cific applications.

e basic database services. While page-servers [6, 15]
make efficient use of hardware facilities and pro-
vide flexibility, we feel that these systems make too
much compromise to data independence [7]. Monet
therefore has a table-oriented datamodel with value-
based query facilities, but uses simple, basic algo-
rithms to avoid the overhead typically found in a
complex DBMS.

1.1 Principle Ideas

We now outline the principal ideas that we applied to
achieve Monet’s design goals.

e perform all operations in main memory. Monet
makes aggressive use of main memory by assuming
that the hot-set of the database fits into main mem-
ory. All its primitive database operations work on
main memory, no hybrid algorithms are used. For
a class of datasets, this assumption holds. We are,
however, also interested in using Monet in appli-
cation areas where it does not. In section 4.1 we
propose a virtual memory management technique,
which transparently converts Monet’s behavior to
the traditional disk-oriented approach when this is
really necessary.

e employ inter-operation parallelism. The system ex-
ploits shared-store and all-cache architectures. A
distributed shared-nothing approach is described
in [23, 24]. Unlike mainstream parallel database
servers like PRISMA [2] and Volcano [9], Monet

does not use tuple- or segment-pipelining. Instead,
the algebraic operators are the units for parallel ex-
ecution. Their result is completely materialized be-
fore being used in the next phase. This approach
benefits throughput at a slight expense of response
time and memory resources.

e use lean bulk operations. Studies like [16, 18] show
that cache profiling can speed up a program by a
factor of two. Deeply nested function calls cause
CPUs to run out of register spaces, to similar per-
formance penalties.

Tuple-oriented database algorithms perform a se-
quence of different operations for every tuple in
a set-operation, and thus reference many different
memory locations repeatedly, easily causing register
overflow and cache misses. In contrast, bulk opera-
tions iterate over a set of contiguous tuples in one
go, executing one basic operation on all of them,
typically without a doing a function call in the in-
ner loop. This allows for a more efficient use of
registers and (more intuitively) of cache memory!.

e use one simple datamodel. Monet uses a simple data
model based on Binary Association Tables (BATs).
This allows for flexible object-representation using
the Decomposed Storage Model (DSM) [4]. This
vertical decomposition also helps partitioning the
database such that the tables fit easier in main
memory. The fixed-width tables allow for much op-
timization of kernel operations through heavy use
of code-inlining.

e allow users to customize the database server. Since
Monet is intended for use by different applications
and programming paradigms, it does not provide
one single user interface language. Its interface con-
sist of an execution-level BAT algebra. Monet pro-
vides extensibility much like in the Gral system [10],
where any new user command can be added to its
interpreter, and its implementation linked into the
kernel. The Monet grammar structure is fixed, but
parsing is purely table-driven on a per-user basis.
Users can change the parsing tables at run-time by
loading and unloading modules.

e Portability The system is written in C and docu-
mented using a literate programming style. Pro-
grammers will find it easy to find their way around,
modify it, and test the system for compliance with
previous versions. However, the Monet algebraic
programming language and its customizability in-
terface will suffice for most application require-
ments.

Figure 1 shows the Monet Interpreter as a multi-
threaded process, connected to its clients via TCP/IP
links. Applications typically accompany themselves by

Tt is often impossible to obtain hard data about CPU-
cache performance. The sole option is to redo a run against
a machine simulator.

SQL front-end
application program
G++ with enbedded OQ|
Data Mining oQL
application run-time system
L Tcp/ip connection tcp/ip connecti :
o °
channe! &
= ® channel
() > 6 Monet Interpreter Z g)
o °
L] [
Extension Extension Extension Extension
Module Module Module Module
Data M ning SQ. mappi ng rithmetic op: oL mappi ng

Monet Job Queue

Goblin Database Kernel | OS specifics|

Figure 1: The Monet Architecture

a specific extension module, which provides the extra
functionality needed by them. Extension modules can
provide operations doing things ranging from arithmetic
operations and GIS specific functionality to an SQL-to-
BAT algebra query scheduler/optimizer.

2 Design Overview

The low-level functionality of Monet is implemented by
the Goblin Database Kernel (GDK), which provides the
binary datamodel, table persistence and basic concur-
rency and transaction mechanisms, comparable to [11].
The latter two mechanisms are not the topic discussed in
this paper. On top of GDK are the — dynamically load-
able — user-defined modules. The upper layer is formed
by the multithreaded Monet Interpreter. We will now
discuss these system components in some more detail.

2.1 GDK

The GDK datamodel partitions every relation vertically
in Binary Association Tables (BATs). The left column of
a BAT is called its head, the right column is called tasl.
A persistent BAT has its representation saved to disk.
The first time a BAT is used, it is loaded from disk, only
to be swapped back when GDK'’s heat-based BAT buffer
manager decides so. Thus, when a BAT is used, it resides
entirely in main memory, such that purely main memory
algorithms can be used.

Traditional relational algorithms are disk-block ori-
ented and try to achieve sequential access to ranges of
tuples, since disk IO cost is dominant in query execu-
tion cost. In main memory systems it is necessary to
work with different cost models. By absence of 10, query
processing cost tends to be dominant [1]. This has im-
portant consequences to which auxiliary datastructures
work best for optimizing access paths to data in main

memory tables. Algorithms typically have to be simple
and lightweight — access to main memory is very fast
— and are not block-oriented, because random access is
almost equally expensive as sequential access in main
memory [17].

For these reasons, the built-in GDK search accelera-
tors are binary index trees (for range queries) and bucket-
chained hashing, both of which are created on the fly
during processing, when it is known to speed up a BAT
operator.

Binary Association Table

(BAT)

hashtabl e | hashtabl e

treeindex | treeindex|

heap heap—
Hash Table buns
index next \

r base /

[free

- si ze

Head Tai |
del-eted Binary Search Tree

Binry UNit (BUN)

\ Dynamic Storage Heap

— base

free
—
\\—>

si ze

Figure 2: Binary Association Tables

2.1.1 Atomic Values

The data stored in the tables are atomic values. These
can either be values of built-in types (integer, pointer,
OID, string, character or float) or user-defined types. For
the latter types, an Abstract Data Type (ADT) facility
is provided, which will be discussed in more detail in
Section 3.2.1.

GDK types can either be of fixed-size or variable-size.
In the first case, atom values directly reside in the tuples
(called BUNs) of a BAT. In the latter case, the BUN
contains an integer index into a heap, where the variable-
sized value can be found. A BAT can have a heap for
any of its two columns.

For variable-sized atomic values there are two rules:

e every value resides in a — disjunct — contiguous range
of memory. This makes it possible to manipulate
loose — single — values as easily as groups of values,
stored in a heap.

e a value may not contain any ’hard’ pointers. Linked
lists can still be implemented with integer indices or
distances between nodes.

This design makes GDK’s datastructures completely
memory-location independent, such that no conversion
overhead is involved when data is copied or moved. In
effect, a heap stored on disk is completely identical to a
heap in memory, which makes it possible to treat it as a
memory-mapped file (see Section 4.1).

2.2 Monet Interpreter

The Monet Interpreter is a textual interface on top of
GDK. It accepts a scripting language called the Monet
Interpreter Language (MIL).

e MIL provides access to the database tables in the
form of persistent BAT-variables, on which BAT al-
gebra commands can be executed.

e The algebra commands and operators are compara-
ble with “execution algebra” commands from Gral
[10], in that they are simply executed without fur-
ther optimizing transformations.

e MIL commands can be overloaded via the polymor-
phous type any. Depending on the actual parame-
ters of a command invocation, a suitable implemen-
tation is chosen at run-time. This allows one to pro-
vide alternate implementations for different types,
such that per-tuple typechecking within commands
can be factored out.

e MIL is a block-structured language, in which every
blocks creates a new variable scope. A sequential
block is denoted by '{..}’. A parallel block, denoted
by ’[..]’, specifies that the statements in the block
can be executed in parallel. It is the programmer’s
responsibility to ensure that parallel statements do
not interfere with each other2.

e Apart from that, MIL provides standard control
structures such as IF..ELSE and WHILE.

e Procedures can be assembled from pieces of script.
Recursion is allowed.

e A special construct are iterators, which iterate over
some subset of a BAT expression, one BUN at a
time. For each BUN, the head- and tail-values are
supplied as parameters to a MIL-statement, which
is then executed.

Its syntax is: <BAT-expr> @ <MIL-stmt>. Inside
the statement, the templates “$1” and “$2” mark
the places where the head- and tail-values are sub-
stituted, on every tuple invocation. The parallel
variant: <BAT-expr> Q@[N] <MIL-stmt>. eXecutes
the MIL-statement in parallel on a number of —
maximally N — selected BUNs at a time.

e Since the Monet Interpreter identifies BATs with a
special kind of OIDs, it is possible to have nested
relations, by storing these “BAT-IDs” (BIDs) in a
BAT.

2Monet provides BAT-level locking primitives.

In all, the MIL provides a rich environment for experi-
mentation purposes. Figure 3 gives an inside look into
the Monet Interpreter. Multiple interpreter threads can
be active at any time, scheduled via a shared job-queue.
A daemon allows for connections being made to Monet
from the internet.

job queue

Bpos

interpreter interpreter
thread thread
root
thread
GDK
binary tables
(BATS)

Figure 3: The Monet Interpreter

2.2.1 Rationale

We chose an execution-level BAT algebra as the query
interface for Monet, since it is intended to be used as
backend for very different applications. Those applica-
tions must address the issue of translating a user-level
query (e.g. in SQL) to a sequence of BAT commands, in
the process of which query optimization is done.

The BAT algebra works on binary tables only. The to-
tal vertical decomposition does not affect in any way the
generality of the system. In [14, 23] algorithms have been
given to transform queries on multi-attribute objects
into sequences of primitive BAT operations. Moreover,
such algorithms tend to significantly outperform multi-
attribute systems, if the number of target attributes is
smaller than the total number of attributes of a relation,
while otherwise performance drops only slightly under
the multi-attribute case [14]. Since BAT operations are
executed on thin tables — which reside in main memory —
normally complex operations (like join or semijoin) tend
to be very cheap. For example, joining two 100K tables
without supporting index won’t take Monet more than
600ms on a SGI Indy. Vertical decomposition makes the
data smaller, such that Monet is effective in only loading
the database hot-set into memory, and better exploits

the CPU cache.

2.2.2 Example

We show in an example what the BAT algebra looks
like. Consider the following SQL query on rela-
tions company [name,telephone] and supply [comp#,
part#, pricel:

SELECT company.name,
company .telephone,
supply.quantity

FROM company, supply

WHERE supply.comp# = company.comp# AND
supply.part# = part_no AND
supply.price < 0.50)

In Monet’s SQL frontend, the relational database scheme
will be decomposed into five tables named comp name,
comp_telephone, supply_comp, supply_part
and supply price, where in each table the head con-
tains an OID, and the tail contains the attribute value.

VAR m_supply, m_comp;
VAR m_name, m_telephone, m_quantity;

SEMIJOIN(supply_part.SELECT (part_no),
supply_price.SELECT (0.0, 0.50));

m_supply := MARK(m_supply) ;

m_comp := JOIN(m_supply, supply_comp);

L

m_supply :

m_name
m_telephone :
m_quantity

JOIN(m_comp, comp_name) ;
JOIN(m_comp, comp_telephone) ;
JOIN(m_supply, supply_quantity);

]
PRINT (m_name, m

telephone, m_quantity);

The variables created in the query cease to exist af-
terwards, because the whole is enclosed in a sequential
block. The three last joins are executed in parallel on
multiprocessor systems, because they are placed in a par-
allel block.

In all, the original double-select, single-join, three-
wide projection SQL query is transformed in a sequence
of 8 BAT algebra commands. We describe in short the
semantics of the BAT commands used:

BAT command result

<AB>.mark {oia|ab € AB A unique_oid(o;)}
<AB>.semijoin(CB) | {ablab € AB,3ed € CD Aa = c}
<AB>.join(CD) {ad|ab € ABAcd € CDAb=c}

<AB>.select(T1,Th)
<AB>.select(T)
<AB> find(T)

{ablab€ ABAb>TIAb LTI}
{ablab € ABADb =TI}
{a|aT € AB}

The dot notation “a.oper(b)” is equivalent to func-
tion call notation “oper(a,b)”. Note that JOIN projects
out the join columns. The MARK operation has the special
semantics of introducing a column of unique new OIDs
for a certain BAT. It is used in the example query to
create the new — temporary — result relation.

3 Customizable Databases

When a database is used for more than administrative
applications alone, the need for additional functionality
quickly arises [20].

e First of all, new application domains typically re-
quire — complex — user-defined data-types, such as
for instance Polygons or Points.

e Having these datastructures, one often wants
to define new predicates and functions on them
(Intersect(p1, p2) or Surface(p), for example).

e Also, new application domains often create a need
for new relational operators, such as spatial join or
polygon overlay.

e In order to evaluate queries using the new predi-
cates, functions and relational operators, one needs
new search accelerators (such as — for instance —

R-Trees).

¢ Finally, applications using a database as backend
want the option to perform certain application-
specific operations near to the data. If a database
server allows one to add user-supplied pieces of code
to it, the communication penalties of creating a sep-
arate server process, encapsulating the database (a
“client-level” server), can be avoided.

Putting all such new code in the kernel of a database
that is intended to support widely varying applications —
with widely different functionality — will make for a large,
difficult-to-maintain system. Clearly, one wants an ex-
tensible design, in which the database can be modularly
customized in different directions.

3.1 Other Systems

In the early days, relational systems only provided a rigid
interface via SQL or QBE. Later versions of INGRES,
and the Postgres system [22] are examples of relational
systems that do allow for the introduction of new data
types and access methods via prefixed ADT interfaces.
This works fine for new datatypes, predicates on them,
and their accelerators, but does not allow for addition
of new relational operators. In recent years, database
researchers have spent much effort on Object-Oriented
databases [15]. In these systems, the programmer has
more control, but to the point that data independence
is compromised and the system gets hard to debug [7].
Another effort to achieve customizability has been the
“extensible-toolkit” approach, where a database can be
assembled by putting together a set of “easily” customiz-
able modules (see [6]). Putting together such a system
remains a serious work, however. One of the most ap-
pealing approaches to the problem we find in the Gral
system [10], which accepts a many-sorted algebra. Such
an algebra can by its nature easily be extended with new
operations.

3.2 Extensibility in Monet

Monet’s extension system most resembles Gral, support-
ing new data types, new search accelerators, and user
defined primitives (embodying both new predicates and
new relational operators). The support for new data
types and accelerators is implemented in the GDK layer
through ADT interfaces, whereas support for new oper-
ations is done in the Monet Interpreter.

Monet extensions are packaged in modules, that
can be specified in the Monet Extension Language
(MEL). Implementations must be provided in the form
of precompiled C compliant object-code. Both module-
specification and -implementation are fed into the
Minstall utility (one of several special-purpose utilities
coming with the Monet server), that parses the specifica-
tion, generates additional code, updates Monet’s module
tables, and stores the object files in the system directo-
ries.

3.2.1 Atomic Types

The atomic types are part of the GDK layer. The pos-
sibility to include new types is implemented there, and
simply funneled upward to the extension system. The
ADT interface assures that GDK’s built-in accelerators
still work on user-defined types. For instance, one of the
standard ADT operations is AtomHash (), which ensures
that GDK’s hash-based join works on BATs of any type.
The ADT interface also contains routines to copy values
to and from a heap, and to convert them to and from
their string representations (for user interaction). Below
we show how an atom can be specified, and which ADT
operations should be defined:

ATOM <name> (<fixed-size>)
FromStr := <fcn>; # parse string to atom
ToStr := <fcn>; # convert an atom to string
Compare := <fcn>; # compare two atoms
Hash := <fcn>; # compute hash value
Null := <fcn>; # create a null atom
Put := <fcn>; # put atom in a BAT
Get := <fcn>; # get atom from a BAT
Delete := <fcn>; # delete atom from a BAT
CleanHeap:= <fcn>; # clean up the heap
NewHeap := <fcn>; # generate a new atom heap
END <name>;

In case of a fixed-sized atom, the Put, Get and Delete
operations, perform the trivial task of updating some
BUNs in the BAT. In case of a variable-sized atomic type,
they have the additional task of updating the heap.

3.2.2 Search Accelerators

Just like the atom ADT interface, the accelerator ADT
is implemented at the GDK level. GDK provides pas-
sive support for user-defined search accelerators via an
ADT interface that maintains user-defined accelerators

under update and IO operations. The support is “pas-
sive” since basic GDK operations only use the built-in
accelerators for their own acceleration.

The rationale behind this is to provide both flexi-
bility and efficiency for the way in which search ac-
celerators are used. The standard interface to rela-
tional access paths is the triple of functions: open(),
findnext(<predicate>), and close(). A single accel-
erator can be used to accelerate evaluation of multiple
predicates (e.g. the same R-Tree can be used to accel-
erate polygon overlay, as well as various types of spatial
joins). Hence, the findnext () operation — which is typ-
ically called at the deepest nested loop of database algo-
rithms — has to do some check on its parameters in every
invocation to see which predicate is being evaluated.

Bearing in mind that search accelerators in Monet ac-
celerate for main memory access, one sees that the tradi-
tional approach may soon lead to performance degrada-
tion. We think that the access path interface for such a
system is best implemented by a collection of C macros,
and hence falls outside the reach of the (precompiled)
GDK layer. User-defined primitives that “know” the ac-
celerator semantics can just use such macros, other prim-
itives cannot. The ADT interface merely serves to ensure
that an accelerator remains up-to-date under GDK op-
erations.

ACCELERATOR <name>

Build := <fcn>; # build accelerator on a BAT
Destroy := <fcn>; # destroy accelerator
Insert := <fcn>; # adapt acc. under BUN insert
Delete := <fcn>; # adapt acc. under BUN delete
Commit := <fcn>; # adapt acc. for transaction commit
Rollback:= <fcn>; # adapt acc. for transaction abort
Load := <fcnd>; # load accelerator from disk
Save := <fcn>; # save accelerator to disk

END <name>;

Note that one can choose to make user-defined accel-
erators persistent (by implementing the Load and Save
operations), though this is not the policy adhered for
GDK’s built-in accelerators.

3.2.3 New Primitives

The MIL grammar has a fixed structure but depends
on purely table-driven parsing. This allows for the run-
time addition of new commands, operators, and itera-
tors. Moreover, every user has an individual keyword-
table, such that different users can speak different “di-
alects” of MIL at the same time. All system tables have
been implemented as BATs and are accessible to the user
via persistent variables for debugging purposes.

In order to do type-checking at the highest possible
level, the Monet Interpreter has been equipped with a
polymorphism mechanism. One can specify a certain
command, operation or iterator multiply, with differing
parameter lists. Upon invocation, the Monet Interpreter
decides which implementation has to be called, based
on the types of the actual parameters. For invocations

inside loops, optimizations have been made, such that —
generally — name resolution is done on the first invocation

only.
The MEL syntax for specifying new primitives is as
follows:

COMMAND <name> (<type-list>) : <type> := <fcn>;
ITERATOR <name> (<type-list>) := <fcnd>;
OPERATOR <name> (<type>) 1 <type> := <fcnd;
OPERATOR (<type>) <name> (<type>) : <type> := <fcn>;

The implementations of all commands, operators, iter-
ators and even ADT operations have to be supplied by
the programmer in compiled C code. For now, Monet
assumes database kernel programmers, who know what
they are doing, and allows for the dynamic linkage of any
C object-file or library into its running kernel.

4 Big Datasets

In the context of the MAGNUM project, Monet’s ex-
tension mechanism is being used to support a high-end
GIS application. This immediately leads to the question
whether a main memory oriented approach is feasible in
this field. In GIS, data volumes tend to be very large,
as shown in the numbers below, taken from the Sequoia
benchmark [21]. It shows the sizes of the three bench-
marks it specifies, and the numbers of tuples in them
(between parentheses). Similar requirements have been
formulated in [8].

| Point | Polygon | Graph | Raster || |
2 Mb 20 Mb 50 Mb 1 Gb Regional
(76 K) (100 K) (300 K)
28 Mb 300 Mb 1 Gb 17 Gb National
(1 M) (1.5 M) (6.5 Mb)
300 Mb | 3 Gb 10 Gb 2 Tb World
(10 M) | (15 M) (65 M)

SEQUOIA Benchmark Sizes

On a workstation with 128 MB of main memory,
Monet performs well until the database hot-set reaches
60 MB. Beyond that, the system will start swapping,
until the BATs operated upon even exceed swappable
memory.

Still, one should bear in mind that GIS algorithms
typically employ filtering steps, in which much smaller
relations are used, before using the voluminous polygon
or graph data [3]. Raster data get decomposed in tiles,
that are not loaded directly into main memory unless
needed, such that the tuple-cardinality and size also stays
modest.

Filtering algorithms in GIS use approximations, for ex-
ample, minimum bounding rectangles (MBRs), for han-
dling of polygon or graph data. Since a BUN consist-
ing of a <0ID, MBR> is 20 bytes long, we see that re-
gional benchmark relations approximating the polygon
and graph data would have sizes 2 Mb and 6 Mb, re-
spectively, which can easily be handled in main memory.

Even for the national benchmark these sizes are 30 Mb
and 130 Mb, which — possibly with the help of some frag-
mentation — can also be made to work in a large main
memory.

The above reasoning shows that the approximation
steps on relatively large GIS data often can be performed
in main memory. However, after the filtering steps, such
algorithms still need to access the big tables, in order to
perform the final steps on the filtered objects. It is clear
that these tables cannot economically be held in main
memory. Therefore we use virtual memory primitives,
supplied by modern operating system architectures.

4.1 Memory Mapped Files

In recent years, there has been an evolution of operat-
ing system functionality towards micro-kernels, i.e. those
that make part of the OS functionality accessible to cus-
tomized applications. Prominent prototypes are Mach,
Chorus, and Amoeba, but also conventional systems like
Silicon Graphics’ IRIX and Sun’s Solaris® provide hooks
for better memory and process management.

Stonebraker discarded the possibility of using memory
mapped files in databases [19], on the grounds that op-
erating systems did not give sufficient control over the
buffer management strategy, and the fact that virtual
management schemes waste memory. Now — a decade
later — we think the picture has changed. Operating
systems like Solaris and IRIX do provide hooks to give
memory management advice (madvise), lock pages in
memory (mlock?), invalidate and share pages of virtual
memory. This is why recently interest of the database
community in these techniques has revived [11].

Monet uses the virtual memory management system
call mmap to map big BATs into its main memory. The
database table is mapped into the virtual memory as a
range of virtual memory addresses. When addresses are
accessed, page faults occur, and the pages are loaded on
need.

This scheme has a number of advantages:

e the only upper limit to the size of the tables is the
virtual address space. Monet currently runs on Sun
and SGI machines that have a 32-bit addressing
scheme. This leads to an address space of 4 Gb,
which for the present is enough. Future CPUs will
be equipped with 64-bits addressing, like DEC’s Al-
pha already is.

e the scheme is totally transparent in Monet. Recall
that Monet’s datastructures are memory location
independent, and take the same form on disk as in
main memory.

e it provides flexibility. Orthogonally, one can decide
to treat the table with BUNS and/or the associated
heaps of a BAT as memory mapped files or not.

3These are the two platform on which Monet is currently
supported.
4One has to have Unix root permission for this.

e it is efficient in loading database tables, since only
the pages needed are loaded, and in saving them,
because MMU hardware support guarantees that
only dirty pages are written.

4.1.1 Block-Oriented Algorithms

In effect, memory mapped files bring Monet’s approach
back to the traditional, disk-block oriented algorithms —
but only where this is really necessary.

In a block-oriented system, clustering of tuples which
have values near to each other, can give considerable per-
formance benefits, a principle on which both Bt-trees as
Rt-trees are based. Such structures are very efficient in
accelerating range queries, which is important in GIS.

A Dblock-oriented strategy can also be applied in
Monet’s virtual memory environment. Memory mapped
BATSs can benefit greatly from clustering BUNs on mem-
ory pages. Figure 4 shows how an bulk-build R-Tree al-
gorithm is used in the cluster command to reorder the
BUNs in a memory mapped BAT. Both the supporting
R-Tree as the BAT itself, are treated as memory mapped
files. The cluster command rearranges the BUNs. The
net effect of it all is very similar to the working of a tra-
ditional R-tree: a select on the range “G..I” causes three
page faults before clustering, which after clustering is
reduced to only one page fault.

BAT BAT
0 | H A ’D 3 | D
1| F K 6 | E

=
2 | K FLL] 1| F
3 | D) 8 | G
4 | E L 0o | H
5 | L 4 [
6 | E B = [m] c 9 | J
7™ H 2 [K
8 | G] 5 | L
9 | J 7 | M

R-TREE

AlE[el]

[OlE[FT] [e[n[T] [LIKIL]m]

¥—> CLUSTER(BAT) : BAT —J

Figure 4: Clustering BATs in Memory Pages

One should note that the cluster operation is im-
plemented as a separate BAT command. Its working is
totally transparent to all other BAT Algebra commands
— it just has an accelerating effect on them.

4.2 Case Example:
Monet

supporting GIS in

We demonstrate how Monet’s extension facilities can be
used to store GIS data, and to express GIS algorithms.
This is done by writing a module that introduces GIS
datatypes, new commands and operations working on
those datatypes (or BATs containing such datatypes),
and new search accelerators to aid in their execution.

4.2.1 Module Specification

We show the specification part in MEL only, since imple-
mentations have to be given in the form of C routines.
The GIS module introduces rectangles, circles, poly-
gons (and polylines) to the system, the intersection oper-
ator, and some commands. We use a four-word represen-
tation for rectangles, and a three-word representation for
circles, such that their fixed sizes in the BUNs are 16 and
12, respectively. Since polygons are variable-sized atoms,
their representation resides in a heap — their fixed part in
the BUN is only a 4-byte integer index into such a heap.

MODULE Gis;
ATOM Polygon(4)
ToStr := polygonToStr;
FromStr := polygonFromStr;
Hash := polygonHash;
Compare := polygonCmp;

END ééiygon;
ATOM Rectangle(16)
END é;;tangle;
ATOM Circle(12)
END éi;cle;
ACCELERATOR RTree;
Insert rtreelnsert;

Delete rtreeDelete;
Destroy rtreeDestroy;

END RTree;
OPERATOR (Polygon) "t!!" (Polygon) : BIT
:= polygonlntersect;
ClipLine(Polygon, Rectangle)
:= lineClip;
ApproxLine(Polygon, INT)
:= line2BoxSeq;
SJ_Intersect(...) ...
SJ_ExistIntersection(...) ...
SJ_ExistEnclosure(...) ...

COMMAND : Polygon

COMMAND : BAT(OID, Rectangle)
COMMAND
COMMAND
COMMAND

END Gis;

The command Approxline(poly,n) produces an ap-
proximation of the polyline poly in just n rectangles
which cover the entire polyline in minimal space.

The last three operations are new semijoin opera-
tors on BATs of rectangles or circles. The command
SJ_Intersect() selects all BUNs that intersect with

10

a certain polyline value, ST ExistIntersection() and
SJ ExistEnclosure() select all BUNs for which a BUN
in a second BAT exists, that intersects with it, or is en-
closed by it, respectively.

4.2.2 Data Model

The data model used in this example is a recursive no-
tion of Area. Its ODL [5] syntax would be as follows:

interface Area {

attribute Set<Area> subareas;
attribute Polygon poly;
attribute Rectangle MBR;
attribute Circle MEC;
attribute int population;
relation City capital;

An area has its form described by a polygon. Two ap-
proximations are availabe: a Minimum Bounding Rect-
angle (MBR), and a Maximum Enclosed Circle (MEC).
These approximations will be used later on to provide a
state-of-the-art spatial join [3]. Furthermore, thematic
attributes like population and capital are present.

To demonstrate the use of nested relations in Monet,
we mapped this definition to a nested set of BATs.

subar eas
oid|oid

neta_pol ys

Joid]bid]

et a_MBRs
Joi d] bid]

nmet a_MECs
[oi d] bi d]

met a_pops

Joi d] bid]

neta_cities

[oi d] bi d]

pol y[bi d] MBR] bi d] MEC] bi d] popul ation[bid] city[bid]

Figure 5: Recursive DSM Schema

The BAT subarea describes which relations are di-
rect subareas of others. We assume hierarchical data
to be stored in the model, e.g. states, containing coun-
ties, containing blocks. The subarea BAT would contain
< 0idstate, Otdcounty > and < 0idcounty, 0idpiock > BUNs. It
can be used to either find out which areas are sub-area
of a certain area, or to find its enclosing super-area.

We assume a syntetic root-area instance exists, which
encloses the top-level areas (e.g. the country enclosing
all states). Each set of sub-areas defined by some area
is stored in a DSM-decomposed relation. Since any non-
leaf area defines such a relation, there is a multitude of
DSM-decomposed relations. Meta-relations consisting of

nested BATs describe which BAT contains the sub-area
information for each non-leaf area.

The nice property of this model, is that is allow differ-
ent resolutions in a hierarchical tree. If necessary, some
counties may have no blocks, or some blocks may be de-
composed to greated detail into yet another set of areas.

4.2.3 GIS Algorithms

Part of the GIS functionality has already been introduced
via new BAT commands in the GIS module. On top
of them, one can easily construct new commands using
the scripted-procedure facility of the MIL. This has two
advantages:

e It allows for fast scripting, which eases experimen-
tation. Procedure interpretation cost is minimized,
but one should still strive to use only bulk com-
mands (operations on BATS) in the innermost loops
of the procedures.

e It allows the programmer to use the MIL facilities
for expressing parallelism, either via parallel blocks,
or via parallel iterators

In this example we show how the MIL can be used to
answer complex intersection queries. In particular, we
want to answer queries like:

“which {states, counties, blocks, parcels} in the United
States intersect with highway 662”7
The following MIL procedure call comes up with the
answer, employing both parallelism and advanced GIS
methods:

Decompose (#USA, #highway66, {0, 1, 2, 3}).
We now discuss both MIL scripted-procedures that we
use to accomplish this:

e ArealntersectLine().

This procedure computes a multi-step intersection
semijoin on an area with a polyline. Its parame-
ters are a set of polygons (with additional approx-
imation relations using MBRs and MECs), and a
polyline. It returns all polygons from the set that
intersect with the polyline. In its computation, it
first approximates the polyline by a set of (100) rect-
angles that overlap it. Then, it does an intersection
semijoin on the MBR approximation with this set of
rectangles, to determine the candidate-set of inter-
secting polygons (line 7). In parallel, an enclosure-
semijoin is computed between the MEC approxima-
tion and the line representation, to obtain the set
of certain-hits (line 8). Only on the candidates that
survive the substraction of the certain-hits (line 12),
the expensive polygon-to-polygon intersection oper-
ation is performed (line 14)

The semijoin in line 10 can be a very big opera-
tion, since it works on the — typically voluminous —
polygon BAT. This BAT might well be a memory
mapped file. In that case, one could argue that a R-
Tree traverse semijoin should be applied instead of

a standard semijoin, in order to optimize sequential
access to clustered polygons. This could be imple-
mented by overloading semijoin(), or by providing
a specialized traverse() command.

e Decompose().

This procedure recursively traverses the hierarchi-
cal data-model till level levels deep, and performs
a multitude of spatial semijoins on the leaves.
In line 24, the parallel HASHLOOP(<value>) itera-
tor, finds all OIDs that are subarea of the current
The statements from line 25 to 30 are ex-
ecuted in parallel, at most 20 at-a-time. Conse-
quently, the INSERT() operation of line 28 needs to
be locked against parallel interference. When ar-
rived at the right level in the hierarchical tree, the
meta-relations are used to find the BATs on which
the actual work is to be transformed (line 33-35).
Note that the clipping done in line 25-26, already
provides a filtering step, such that no work is wasted
in areas where there surely can be no intersection.

area.

Note that there is an open issue which parameters (e.g.
the granularity of parallelism, or the polyline approxi-
mation resolution in line 5) work best. This paper does
not seek to investigate GIS algorithms, we just show
that these are easily expressed and experimented with
in Monet.

1 PROC ArealntersectLine (polys, mbrs, mecs, line)

2 {

3 VAR recheck, hits;

4 { # new segblock for local vars
5 VAR filter, approx := ApproxLine(line, 30);

6 L # parblock

7 filter := SJ_ExistIntersection(mbrs, approx);

8 hits = SJ_ExistEnclosure(mecs, approx);

9]

10 recheck := polys.SEMIJOIN(filter);
11 hits := recheck.SEMIJOIN(Chits);
12 DELETE(recheck, hits);

13}

14 hits.INSERT(SJ_Intersect(recheck, line));
15

16 RETURN hits;

17 }

18

19 PROC Decompose(Areald, line, level)

20 {

21 IF (level > 0) {

22 VAR clip, result := NEW(OID, Polygon);

23

24 subareas@[20]HASHLOOP (Areald) { # parallel iterator

25 clip := ClipLine(line,

26 meta_MBRs.find(Areald).find($2));

27 IF (clip != NIL) {

28 LOCK(INSERT(result, Decompose($2, clip, level-1));
29 }

30 }

31 RETURN result;

32 }

33 RETURN ArealntersectLine(

34 meta_polys.find(Areald), meta_MBRs.find(Areald),
35 meta_MECs.find(Areald), line);

36 }

5 Conclusions

Monet is a database system that takes an offbeat view
on current design issues. It uses the Decomposed Stor-
age Model (DSM) to vertically fragment all relations and
to provide for a simple data model. It employs inter-
operation parallelism and executes all — bulk — operations
in main memory, allowing for high performance. Monet
has a flexible extensibility interface, and uses virtual-
memory techniques to handle very large data sets. The
Monet Interpreter Language, together with the extensi-
bility mechanism, provides powerful functionality to sup-
port new application domains, as we show in the GIS
example. The system is already used on a daily basis
for Data Mining application [12, 13] while work is still
under way in the project to support an ODL/OQL C++
binding with Monet as backend.

References

[1] A. Analyti and S. Pramanik. Fast search in main
memory databases. In Proc. ACM SIGMOD Conf.,
page 215, San Diego, CA, June 1992.

P. M. G. Apers, C. A. van den Berg, J. Flokstra,
P. W. P. J. Grefen, M. L. Kersten, and A. N.
Wilschut. PRISMA/DB: A parallel main memory
relational DBMS. [EEE Trans. on Knowledge and
Data Eng., 4(6):541, December 1992.

T. Brinkhoff, H. Kriegel, R. Schneider, and
B. Seeger. Multi-step processing of spatial joins.
In 28 ACM SIGMOD Conf. on the Management of
Data, pages 197-208, June 1994.

[2]

[4] G. Copeland and S. Khoshafian. A decomposition
storage model. In Proc. ACM SIGMOD Conf., page

268, Austin, TX, May 1985.

R.G.G. Catell et al. The Object Database Standard.
Morgan Kaufman, 1993.

et al. Carey,M. and DeWitt,D. The EXODUS ex-
tensible DBMS project: An overview. In In ’Read-
ings in Object-Oriented Database Systems” edited by
S.Zdonik and D.Maier, Morgan Kaufman. 1990.

et al. Neuhold,E. and Stonebraker,M. Future direc-
tions in DBMS research. ACM SIGMOD RECORD,
18(1), March 1989. Also published in/as: ICCS,
Berkeley, TR-88-1, Sep.1988.

[5]

[7]

A. U. Frank. Properties of geographic data: Re-
quirements for spatial access methods. In Advances
in Spatial Databases, 2nd Symposium, SSD 91,
pages 225-235, Zurich, Switzerland, August 1991.
Springer Verlag.

G. Graefe. Encapsulation of parallelism in the vol-
cano query processing system. In 19 ACM SIGMOD
Conf. on the Management of Data, Atlantic City,
May 1990.

12

[10]

[14]

[15]

[16]

[17]

[18]

R. H. Guting. Gral: An extensible relational
database system for geomatric applications”. In
Proceedings of the 15th Conference on Very Large
Databases, Morgan Kaufman pubs. (Los Altos CA),
Amsterdam, August 1989.

D. Lieuwen H. V. Jagadish, R. Rastogi, A. Silber-
schatz, and S. Sudarshan. Dali: A high performance
main memory storage manager. In Proceedings of
the 20th VLDB Conference, Santiago, Chile., pages
48-59, September 1994.

M. Holsheimer and M. L. Kersten. Arcitectural sup-
port for data mining. Int. Workshop on Knowledge
Discovery in Databases, Seattle, 1994.

M. Holsheimer, M. L. Kersten, and A. Siebes.
Data surveyor: searching for nuggets in parallel.
In Knowledge Discovery in Databases. MIT Press,
Cambridge, MA, USA, 1995.

S. Khoshafian, G. Copeland, T. Jagodits, H. Boral,
and P. Valduriez. A query processing strategy for
the decomposed storage model. In Proc. IEEE CS
Intl. Conf. No. 3 on Data Engineering, Los Angeles,
February 1987.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb.
The ObjectStore database system. Comm. of the
ACM, Special Section on Next-Generation Database
Systems, 34(10):50, October 1991.

A.R. Lebeck and D.A. Wood. Cache profiling and
the spec benchmarks: A case study. IEEE Com-
puter, 27(10):15-26, October 1994.

T. J. Lehman and M. J. Carey. A study of index
structures for main memory database management
systems. In Proceedings of the 12th Conference on
Very Large Databases, Morgan Kaufman pubs. (Los
Altos CA), Kyoto, August 1986.

A. Shatdahl, C. Kant, and J.F. Naughton. Cache
conscious algorithms for relational query process-
ing. In Proceedings of the 20th VLDB Conference,
Santiago, Chile., pages 510-521, September 1994.

M. Stonebraker. Operating system support for
database management. Communications of the

ACM, 14(7), July 1981.

M. Stonebraker. Inclusion of new types in relational
database systems. In Proc. IEEE CS Intl. Conf. No.
2 on Data Engineering, Los Angeles, February 1986.
Also published in/as: UCB/ERL memo M85/67,
Jul.1985.

M. Stonebraker, J. Frew, K. Gardels, and J. Mered-
ith. The Sequoia 2000 storage benchmark. In 19
ACM SIGMOD Conf. on the Management of Data,
Washington,DC, May 1993.

[22]

M. Stonebraker and G. Kemnitz. The POST-
GRES next-generation database management sys-
tem. Comm. of the ACM, Special Section on Next-
Generation Database Systems, 34(10):78, October
1991.

C. A. van den Berg. Dynamic Query Optimization.
PhD thesis, February 1994.

C. A. van den Berg and M. L. Kersten. An analysis
of a dynamic query optimisation scheme for different
data distributions. In J. Freytag, D. Maier, and
G.Vossen, editors, Advances in Query Processing,
pages 449-470. Morgan-Kaufmann, San Mateo, CA,
1994.

13

